问题描述
我正在寻找一种与 sql 等效的方法
i'm looking for a way to do the equivalent to the sql
select distinct col1, col2 from dataframe_table
pandas sql 比较没有关于 distinct 的任何内容.
the pandas sql comparison doesn't have anything about distinct.
.unique() 仅适用于单个列,所以我想我可以连接这些列,或者将它们放在列表/元组中并以这种方式进行比较,但这似乎是熊猫应该做的以更本土的方式进行.
.unique() only works for a single column, so i suppose i could concat the columns, or put them in a list/tuple and compare that way, but this seems like something pandas should do in a more native way.
我是否遗漏了一些明显的东西,或者没有办法做到这一点?
am i missing something obvious, or is there no way to do this?
推荐答案
您可以使用drop_duplicates 方法来获取 dataframe 中的唯一行:
you can use the drop_duplicates method to get the unique rows in a dataframe:
in [29]: df = pd.dataframe({'a':[1,2,1,2], 'b':[3,4,3,5]}) in [30]: df out[30]: a b 0 1 3 1 2 4 2 1 3 3 2 5 in [32]: df.drop_duplicates() out[32]: a b 0 1 3 1 2 4 3 2 5
如果您只想使用某些列来确定唯一性,您还可以提供 subset 关键字参数.请参阅文档字符串.
you can also provide the subset keyword argument if you only want to use certain columns to determine uniqueness. see the docstring.